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This paper is an attempt to simplify and clarify the mathematical language used 
to express quaternionic quantum mechanics (QQM). In our quaternionic approach 
the choice of "complex" geometries allows an appropriate definition of momentum 
operator and gives the possibility to obtain consistent formulations of standard 
theories. Barred operators represent the key to realizing a set of translation rules 
between quaternionic and complex quantum mechanics (QM). These translations 
enable us to obtain a rapid quaternionic counterpart of standard quantum 
mechanical results. 

1. I N T R O D U C T I O N  

Since the discovery of quarternions by Sir William Rovan Hamilton 
(1943, 1969) a recurring question has been posed: Is it possible to formula te  
quaternionic physical theories? After the fundamental works of  Finkelstein 
et al. (1962, 1963a, b, 1979) on quaternionic versions of gauge theories and 
QM, in recent years there has been renewed interest in physical applications 
for noncommutative fields. Among the numerous references on this subject, 
we recall the important paper of  Horwitz and Biedenham (1984), where the 
authors showed that the assumption of a complex scalar product, "complex" 
geometry (Rembielifiski, 1978) permits the definition of tensor products 
between single-particle wave  functions, without encountering intractable 
problems of interpretation and definition due to the noncommuting multiplica- 
tions of  quaternionic wave functions. We also mention the recent book of 
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Adler (1995), where a complete and clear explanation of QQM with quatemi- 
onic geometry is formulated. In his book, Adler also suggested the stimulating 
possibility to look at the color degree of freedom in the Harari-Shupe model 
(Harari, 1979; Shupe, 1979) by a n o n c o m m u t a t i v e  generalization (Adler, 
1994) of standard (complex) QM. 

In this work we propose a simple quaternionic language for the formula- 
tion of physical theories. We also exhibit explicitly a set of rules for passing 
back and forth between standard QM and its quaternionic versions. The 
possibility to unify the different formulation of QM, namely 

complex ~ real quaternionic ~ complexified quaternionic 

suggests that the standard (complex) version of physical theories represents 
a choice and not a necessity. We explicitly show that the different formulations 
of the Dirac equation by complex, real, and complexified quaternions have 
the same physical content. In fact, by our translation rules we shall connect 
4 • 4 complex matrices with two-dimensional real  and one-dimensional 
com p lex i f i ed  quaternionic operators. The extension of complex fields to qua- 
ternionic structures gives special advantages. We like calling our translations 
"partial translations" since the quaternionic approach provides additional 
physical predictions and new geometric interpretations. We shall see that the 
use of complexified quaternions and their possible translation by 2 X 2 
complex matrices has the interesting result of giving a two-dimensional 
complex representation of the Dirac equation. 

The paper is structured as follows. After a brief introduction to quaterni- 
onic algebras, we explain the concept of barred  o p e r a t o r s  (Section 2). In 
Section 3 we discuss the choice of "complex" geometries and obtain an 
appropriate definition of momentum operator within QQM. In Sections 4 
and 6 we give the main tools to perform the translation rules, while in Section 
5 we present an interesting example of translation between complex and 
quaternionic QM, the Dirac equation. Our conclusions are drawn in the 
final section. 

2. QUATERNIONIC ALGEBRAS 

Complex numbers can be constructed from the real numbers by introduc- 
ing a quantity i whose square is - 1 :  

z = rl + it2, rl,2 ~ 

Likewise, we can construct the quaternions from the complex numbers in 
exactly the same way by introducing another quantity j whose square is - 1, 

q = zl + jz2, Zl,2 e C(I, i) 
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and which anticommutes with i ( i j  = - j i  = k). We wish to emphasize the 
need for three a n t i c o m m u t i n g  imaginary units in constructing the quaternionic 
field (only two imaginary units are not sufficient to obtain the Hamilton field). 

In 1843, Hamilton attempted to generalize the complex field in order 
to describe the rotations in three-dimensional space. He began by looking 
for numbers of the form x + iy + j z ,  with i 2 = j2 = _ 1. Hamilton's hope 
was to do for three-dimensional space what complex numbers do for the 
plane. Influenced by the existence of a complex number norm 

z*z = (Re z) 2 + (Im z) 2 

when he looked at its generalization 

(x - iy - j z ) ( x  + iy + j z )  = x 2 + y2 + z 2 _ (i j  + j i ) y z  

to obtain a real number, he had to adopt the anticommutative law of multiplica- 
tion for the imaginary units. Nevertheless, as remarked before, with only two 
imaginary units we have no chance of constructing a new numerical field, 
because assuming 

ij = Oto + iot I + jot 2 (OtO, l, 2 E ~ )  

j i  = ~3o + ifAi + J~2 (13o, l,2 ~ ~ 

and 

O = - j i  

we find the relation ao, l,z = 130,1,2 = 0. Thus, we must introduce a third 
imaginary unit k --/= i / j ,  with 

k = i j =  - j i  

2.1. Real Quaternionic Algebra 

The new noncommutative field is characterized by three imaginary units 
i, j, k which satisfy the following multiplication rules: 

i 2 = f l  = k 2 = i jk  = - 1  (1) 

Equation (1) contains the solution of the problem which "haunted" Hamilton 
for at least 15 years (Appendix A 1). Numbers of the form 

q = xo + ix + j y  + kz  (Xo, x ,  y, z e ~t)  (2) 

are called (real) quatern ions .  They are added, subtracted, and multiplied 
according to the usual laws of arithmetic, except for the commutative law 
of multiplication. 
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Similarly to rotations in a plane that can be concisely expressed by 
complex number, a rotation about an axis passing through the origin and 
parallel to a given unitary vector fi - (ux, u~, uz) by an angle ot can be obtained 
taking the following quaternionic transformation: 

exp h - u  h - r e x p  h . u  

where h -- (i, j, k), r - (x, y, z), and h �9 r = ix + j y  + kz. A similar approach 
to rotations was introduced by Olinde Rodrigues in 1840, before Hamilton's 
discovery of quaternions (Appendix A2). 

We recall that the quaternion q in equation (2), with the identification 
xo -- ct, can be used to formulate a one-dimensional version of the Lorentz 
group (De Leo, 1996b). This gives the natural generalization of Hamil- 
ton's idea 

complex/plane ~ pure imaginary 

quatemions/space --~ quaternions/space-time 

completing the unification of algebra and geometry. 
To conclude this introduction to the real quaternionic algebra, we intro- 

duce the quaternionic conjugation operation denoted by * and defined by 

q t = Xo - ix - j y  - kz (3) 

We note that the previous conjugation implies 

(qp)t = p tqt 

We also observe that q tq and qqt are both equal to the real number 

N(q)  = x~ + x 2 + y2 + z 2 

which is called the norm of q. When q :/: 0, we can define q -1 = q t /N(q ) ,  
so the quaternions form a zero-division ring. Such a noncommutative number 
field is denoted, in Hamilton's honor, by ~ .  

Whereas with complex numbers we can define only one type of conjuga- 
tion t ~ - t  (we use the notation iota to distinguish the imaginary complex 
unit t from the imaginary quaternionic unit i), working with quaternionic 
numbers, we can introduce different conjugation operations. Indeed, with 
three imaginary units we have the possibility to define, besides the standard 
conjugation (3), the six new operations 

( i , j ,  k) ~ ( - i ,  +j, +k), (+i,  - j ,  +k), (+i ,  +j, - k )  

( i , j ,  k) ~ (+i,  - j ,  - k ) ,  ( - i ,  +j, - k ) ,  ( - i ,  - j ,  +k) 
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Nevertheless, the previous six conjugations are not independent. In fact, we 
can prove that the conjugation operations which change only one imaginary 
unit are connected between themselves and with the conjugation of all three 
imaginary units through similarity transformations, as in 

q--~ - iqti, - jq*j ,  - k q t k  

An analogous observation can be formulated for the conjugation of two 
imaginary units 

q ~ - i q i ,  - j q j ,  - k q k  

2.1.1. Real Linear Barred Operators 

Due to the noncommutative nature of quaternions, we must distinguish 
between q~q2 and q2q~. Thus, it is appropriate to consider left/right-actions 
for our imaginary units i, j, and k. We introduce barred operators to represent, 
in a compact way, the right-action of the three quaternionic imaginary units. 
Explicitly, we write 

11i, llj, Ilk (4) 

to identify the right multiplication of i, j, k and so 

(llh)q ---- qh 

where h - (i, j, k). In this formalism, the most general transformation on 
quaternions will be given by 

qo + qlli + q21j + q31k  (q0,1.2,3 E ~ )  (5) 

In the last few years the left/right-actions of  the quaternionic numbers, 
expressed by barred operators (5), have been very useful in overcoming 
difficulties owing to the noncommutativity of quaternions. Among the suc- 
cessful applications of barred operators we mention the one-dimensional 
quaternionic formulation of Lorentz boosts. Explicitly, the quaternionic gener- 
ators of the Lorentz group are 

boost (ct, x) klj - j l k  
2 

ilk - kli 
boost (ct, y) 

2 
j l i  - ilj 

boost (ct, z) 
2 

i -  11i 
rotation around x 

2 
j - l ~ j  

rotation around y 
2 

k -  Ilk 
rotation around z 

2 
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The four real quantities which identify the space-time point (ct, x, y, z) are 
represented by the quaternion 

q = ct + ix + j y  + kz 

The use of barred operators (5) gives us the possibility to extend the connection 
between the special unitary group SU(2) and the unitary quaternions by 
allowing a one-dimensional  quaternionic version of the special linear group 
SL(2) (De Leo, 1996b). 

Remembering the noncommutativity of the quaternionic multiplication, 
we must specify if our scalar factors are quaternionic, complex, or real 
numbers. Operators which act on states only from the left (i.e., quaternionic 
numbers) will be named quaternionic l inear operators and will be simply 
indicated by q. Obviously, from these, more general classes of operators, 
such as complex or real linear quarternionic operators, can be constructed. 
For example, the barred operator (5) represents a real l inear quaternionic 
operator. To complete the list of possible barred operators we give an explicit 
example of complex  l inear quaternionic operator 

~i -- qo + qlli  (6) 

2.1.2. Complex Linear Barred Operators 

Let us now discuss the algebra of complex linear barred operators and 
introduce some elementary relations and definitions which will be useful in 
the following sections. The product of two complex linear barred operators 
(~ and (~, in terms of quaternions q0,1 and P0,~ is given by 

(~(~ip = qoPo - qlPl + (qoPl + qlPo) li 

The "full" conjugation operation is defined by changing the sign of our left/ 
right quaternionic imaginary units, i.e., 

(11i) t = -11i (i, j, k)* = - (i, j ,  k) and 

The previous definition implies 
i i t 

We observe that complex linear operators (6) are characterized by four com- 
plex numbers and this suggest a possible connection between complex linear 
quatemionic operators and 2 • 2 complex matrices (De Leo and Rotelli, 
1994). 

2.2. Complexified Quaternionic Algebra 

Up to now we have been working with a quatemionic algebra over a 
real field. Obviously, we can define a more general quatemionic algebra over 
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a field ~; :# ~t; in particular, we can introduce the so-called complexified 
quaternionic algebra 

~c = {Co + ic l  + j c2  + kc3 c0,1,2,3, E C(1, t)} (7) 

where the new imaginary unit t (:# i) commute with the quaternionic imagi- 
nary units i, j, k 

[ t , h ]  --- 0 

Working with complexified quaternions, we have three different (independent) 
opportunities to define conjugation operations 

q ~ = c ~  + h . c *  

qc* = c 0 - h ' c  

q c t = c * - h ' c *  

where * indicates the standard complex conjugation (t ~ - t ) .  It is straightfor- 
ward to prove that 

(qcPc) ~ = q~p~ 

(qcPc)* * * = P c q c  

and consequently 

(qcpc)  t = (qcpc) '*  = ( q r ~ ) *  = Pc- "*~*c = ptcqtc 

By introducing barred operators, we must admit two kinds of complex linear 
barred operators. In fact, we can have t-complex linearity or /-complex 
linearity (note that t refers to the complex field ~,  whereas i refers to the 
quaternionic imaginary units of ~0). 

2.2 .1 .  t-Complex Linear Barred Operators 

Admitting t-complex linearity, the most general transformation on com- 
plexified quaternions will be given by 

~3"c =- qc + pcl i  + rclj + s~lk (qc, Pc, re, sc ~ ~ c )  (8) 

The product of two t-complex barred operators (7~ ,l and C~ ,2 in terms of 
complexified quaternions is given by 

{~,l(~tc,2 = qcAqc,2 --  Pc,lPc,2 --  rc, trc,1 -- Sc, tSc,l 

+ (qc, lPc,2 + PcAqc,2 -- rc,lSc,2 + sc, lrc,2)li 

+ (qc, lrc,2 + rcAqc,2 --  scAPc,2 + pcASc,2)lj 

+ (qc, jsc,2 + sc, lqc,2 -- Pc, ire,2 + rc, lpc,2) lk  
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The conjugation operations are defined as follows: 

(~o =- q~ + p~li + ~ l j  + s~lk 

(~* - -  q *  - p * ~ l i  - r * l j  - s*lk 

(~t = qtc - p~li - r~lj -- si lk 

The �9 involution represents an automorphism, while the * and t conjugations 
are antiautomorphisms. If we analyze the transformation (8), we immediately 
note that such a transformation is characterized by 16 t-complex parameters 
and this can be used to connect t-complex linear barred operators to 4 X 4 
complex matrices (De Leo, 1996a). The analogy will be completed when 
will introduce an t-complex geometry which guarantees the orthogonality of 
the following complexified quaternionic fields: 

c, ic, j c ,  kc c �9 ~(1, t) 

and consequently allows the identification of a complexified quaternionic 
state by a four-dimensional complex vector column. 

2.2.2. t -Complex  Linear Barred Operators 

As previously remarked, we must admit two kinds of complex linear 
barred operators. Together with t-complex linearity (just discussed), we have 
to introduce/-complex linearity. In this last case, the most general transforma- 
tion on complexified quaternions will be given by 

Noting that 

(~i - qc + p~li (q~, p~ �9 ~ )  (9) 

we can obtain the algebra of/-complex linear barred operators directly from 
the one of t-complex linear barred operators, killing the 1 I j and 1 I k terms. 
We conclude this brief discussion by some considerations on the complex  
f reedom degrees of the transformation (9). The barred operator (~/is character- 
ized by eight/-complex numbers 

(Y/c ~ Zl q-JZl -t- I,(Z2 + JZ2) -I- [Z3 -I-jZ3 -t- I,(Z4 -~-jZ4)] Ii, 

Zl,2,3,4, Zl,2,3,4 �9 C(1, i) C 

Apparently, we have no possibilities of relating such operators to 4 • 4 
complex matrices, and consequently to express the Dirac algebra. Neverthe- 
less, the �9 involution will enable us to obtain the missing complex freedom 
degrees, providing the desired (unexpected) translation. 
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3. "COMPLEX" GEOMETRIES 

The noncommutativity of the quaternionic multiplication requires that 
we specify whether the quaternionic Hilbert space is to be formed by right 
or left multiplication of vectors by scalars. We must also specify whether 
our scalars are quaternionic, complex, or real numbers. We will follow the 
usual choice (Horwitz and Biedenharn, 1984; Adler, 1995) and work with a 
linear vector space under right multiplication by scalars. 

In QM, probability amplitudes, rather than probabilities, superimpose, 
so we must determine what kinds of number system can be used for the 
probability amplitudes s~. We need a real modulus function N(~) such that 

Probability = [N(~)] 2 

The first four assumptions on the modulus function are basically technical 
in nature 

N(0) = 0 

N ( ~ ) > 0  if ~ r  

N(r.~l) = IrlN(~), r real 

N(~I + -~/2) < N(.~l) + N(~2) 

A final assumption about N(~)  is physically motived by imposing the corre- 
spondence principle in the following form: We require that in the absence of 
quantum interferences effects, probability amplitude superimposition should 
reduce to probability superimposition. So we have an additional condition 
on N(s~): 

N(~l~/2) = N(~I)N(.~2) 

A remarkable theorem of Albert (1947) shows that the only algebras over 
the reals admitting a modulus function with the previous properties are the 
reals ~t, the complex ~,  the (real) quaternions ~ ,  and the octonions ~. The 
previous properties of the modulus function seem to constrain us to work 
with division algebras (which are finite-dimensional algebras for which a :~ 
0, b v~ 0 imply ab :~ 0), in fact 

implies 

which gives 

N(,~|s~2) = N(,~I)N(s~2) :/: 0 

�9 ~1,~/2 4~ 0 
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A simple example of a nondivision algebra is provided by the algebra 
of complexified quatemions since 

(1 + it)(1 -- it) = 0 

guarantees that there are nonzero divisors of zero. So, if the probability 
amplitudes are assumed to be complexified quaternions, we cannot give a 
satisfactory probability interpretation. Nevertheless, we know that probability 
amplitudes are connected to inner products, and thus, we can overcome the 
above difficulty by defining an appropriate scalar product. 

3.1. Real  Q Q M  

Within real QQM we can define three scalar products. We will call the 
binary mapping (~lq~> of V~ • V~ into ~ ,  defined by 

(~lq0> = f d3x t~tq0 (10) 

the quaternionic scalar product and the binary mapping <~lqo)c of V~ x V~ 
into C(1, i), defined by 

1 - ili 
(~ltO)c -- - -  (0liP> (1 l) 

2 

the complex scalar product or complex geometry. The last trivial possibility 
is represented by a real scalar product, the binary mapping (01q~>r of V~e • 
Vx into ~ ,  defined by 

(t~jq3>r 1 - ili - j l j  - klk 
= 4 (~lq~) (12) 

In real QQM we use a linear quaternionic Hilbert space under right 
multiplication by complex scalars and work with complex scalar products. 

3.1.1. "Complex"  Momentum Operator 

We justify the choice of a complex geometry by recalling that although 
there is in QQM an anti-self-adjoint operator 8 with all the properties of a 
translation operation, imposing a quatemionic geometry, there is no corres- 
ponding quaternionic self-adjoint operator with all the properties expected 
for a momentum operator. This "hopeless" situation is also highlighted in 
Adler's recent book (1995). Nevertheless, we can overcome such a difficulty 
by using a complex scalar product and defining as the appropriate momen-  
tum operator 

p =- - 8 1 i  (13) 
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Note that the choice p - - iO  still gives a self-adjoint operator with the 
standard commutation relations with the coordinates, but such an operator 
does not commute with the Hamiltonian, which will, in general, be a quatemi- 
onic quantity. Obviously, in order to write equations that are relativistically 
covariant, we must treat the space components and time in the same way, 
hence we are obliged to modify the standard "complex" equations by the 
following substitutions: 

tot ---> Otli and tO --> Oli 

Thus, the four-momentum operator becomes p ~ - O~li. 

3.1.2. Doubling of  Solutions 

The introduction of a complex projection for quaternionic scalar products 
gives an interesting doubling of solutions. Indeed, we observe that the dimen- 
sionality of a complete set of states for complex inner products (~lq~)c is 
twice that of the quantum inner product (~lq~). Specifically, if I~i ) are a 
complete set of intermediate states for the quaternionic inner product, so that 

I 

I~i ) and I~ij) form a complete set of states for the complex inner product 

t,p) = + t j)( dI,p)c 
l 

m 

where IX,.) represent complex orthogonal states. 
The choice of a complex geometry also justified the so-called "symplec- 

tic" complex representation of a quaternionic state 

q = z + j ~ ,  z , ~ C ( 1 ,  i) C ~  

by the complex column matrix 

q ~ ' ( z l  z,~: i - ->t  (14) 

3.2. Complexified QQM 

As remarked at the beginning of this section, assuming complexified 
quatemionic amplitudes, we cannot give a satisfactory probability interpreta- 
tion. Thus, we must work with quaternionic or complex scalar products. 
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The considerations taken in Section 3.1 can be immediately extended 
within complexified QQM. To define an appropriate momentum operator, 
we choose to adopt a complex geometry. Nevertheless, complex geometry 
represents an ambiguous term in complexified QQM. In fact, we have the 
following two possibilities: 

(a) L-complex (iota-complex) geometry, the binary mapping (~1~), of 
V~c • V~ec into c~(1, Q, 

(Xltl~), = 1 - ili - jrj - klk (~ld~) (15) 
4 

(b) /-complex geometry, the binary mapping (~lqb)i of V% • V~ c into 
C(l,  i), 

1 - ili 
( ~ l ~ ) i -  ~ (~lqb) (16) 

Consequently, we have to introduce two different momentum operators. 

3.2.1. "t-Complex" Momentum Operator 

Recalling the commutation rules between the complex imaginary unit 
t and the quaternionic imaginary units h -- (i, j, k) 

[ t ,  h]  - -  0 

we define, within complexified QQM with t-complex geometry, the following 
momentum operator: 

p - -  tO (--= - 0 1 0  ( 1 7 )  

This self-adjoint operator gives the standard commutation relations with the 
coordinates and obviously commutes with the quaternionic Hamiltonian. 

3.2.2. "L-Complex" Momentum Operator 

Within complexified QQM with/-complex geometry, the choice of one 
of the three imaginary quatemionic units to locate the complex plane of 
projection for scalar products requires us to define the momentum operator 
by the right-action of the imaginary unit i. Thus, the appropriate definition 
of momentum operator, within complexified QQM with/-complex geometry, 
is practically that one given in equation (13), namely 

p - - 0 1 i  

3.2.3. Quadrupling of Solutions 

We observe that both the t-complex (iota-complex) and the/-complex 
geometry present a quadrupling of solutions. Specifically, if I~t) are a complete 
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set of intermediate states for the complexified quaternionic inner product, 
so that 

l 

then I~l), I~ti), I~t]), I~tk) form a complete set of states for the t-complex 
inner product 

= ~ I'qn)(Xlnl~)t L'qn) t-complex orthogonal states 
tl  

and ]~l), ]~/L), I~/j), I~ILj) form a complete set of states for the /-complex 
inner product 

If]P) = ~ I~l)(~tlt~) i q- I~lL)(~lLldP)i "1- I~/j)(~/jl~b)i q- i~ILj)(~ILjI(~)i 
1 

= ~ I~n)(~l~)i I~n) i-complex orthogonal states 
n 

This quadrupling of solutions will be the key in wnting a one-dimensional 
(complexified) quaternionic Dirac equation. 

4. EVEN-DIMENSIONAL TRANSLATION 

Complex linear real quaternionic operators are characterized by four 
complex numbers and real quaternionic states by two complex orthogonal 
states. We also showed that t-complex linear barred operators distinguish 
16 complex parameters and complexified quaternionic states locate four t- 
complex orthogonal states. This suggests a possible identification between 2 
• 2 complex matrices and real quatemions and between 4 • 4 complex 
matrices and complexified quaternions. 

4.1. Real Quaternionic Translation 

The operator representation of i, j, and k consistent with the identifica- 
tion (14) 

i ~ ( L  0 0 ) t  = tg3, j ~ ( 1 0 0 1 )  = -Ltr2, k~(0_L O L) ~--. - - L O -  1 

(18) 

has been known since the discovery of quaternions. It permits any quaternionic 
number or matrix to be translated into a complex matrix, but not necessarily 



2738 De Leo and Rodrigues 

vice versa. Eight real numbers are required to define the most general 2 X 
2 complex matrix, but only four are needed to define the most general 
quaternion. In fact, since every (nonzero)quaternion has an inverse, only a 
subclass of invertible 2 • 2 complex matrices is identifiable with quaternions. 
Complex linear quaternionic operators complete the translation. The barred 
quaternionic imaginary unit 

0) 
adds four additional degrees of freedom, obtained by matrix multiplication 
of the corresponding matrices, 

11i, ili, j l i ,  kli 

and so we have a set of rules for translating from any 2 x 2 complex matrices 
to complex linear barred operators and vice versa (Appendix B 1). This opens 
new possibilities for quaternionic numbers; see, for example, the quaternionic 
version of the relativistic equations (Rotelli, 1989a; De Leo, 1995), the one- 
dimensional version of the Glashow group (De Leo and Rotelli, 1996a), the 
quaternionic Lagrangian formalism (De Leo and Rotelli, 1996b), noncommu- 
tative grand unification theories (De Leo, 1996c), and hyper-complex groups 
(De Leo, n.d.). 

4.2. Complexified Quaternionic Translation 

In analogy to the representation (14), we introduce for complexified 
quaternionic states 

qc = Co + iCl + jC2 + kc3, C0,1,2, 3 ~ ~(1, t) 

the "symplectic" t-complex representation by the following four-dimensional 
vector column: (co) 

cl (19) 
qc ~ c2 

C3 

Repeating the same steps of the previous subsection, we find that the operator 
representation of the quaternionic imaginary units h -= (i, j, k) consistent 
with the above identification is 
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whereas the complex imaginary unit t is identified by the matrix t14• 4. 
Obviously, in order to complete the translation rules, we must also give the 
representation for the right-action of the quaternionic imaginary units, namely 

-- ~ 0 
I l i a (  0 tr2 t~r20)' l l j ~ ( 0  O1), Ilk (_try2 - ~  r 

(21) 

Note that, as expected, [h, 11h] = 0, and so in finding the matrix representation 
of the crossing left-right imaginary units we can choose left or right multiplica- 
tion. For example, 

k l i ~ (  0tr, -tr'~[-ttr20/~, 0 0)~k• 
I,o" 2 

-0erl) ~--~ (11i) X k 

The complete set of rules for translating from any 4 • 4 complex matrices 
to t-complex linear barred operators and vice versa is given in Appendix B2. 

5. THE DIRAC EQUATION 

We now have all the necessary tools to write down a quaternionic Dirac 
equation. In fact, we defined an appropriate momentum operator and gave 
the key for performing a quaternionic translation of 4 • 4 complex matrices 
by real and complexified quaternions. We then derive the quaternionic Dirac 
equation not from first principles, but simply by translating the standard 
complex equation. In Section 5.3 we also discuss the possibility of a "surpris- 
ing" translation by/-complex linear (complexified) quaternionic operators. 

In the following we shall perform quaternionic translations of the com- 
plex Dirac equation 

where the ~/~-matrices 
Zuber, 1985) 

t'y~O~O(x) = md~(x) 

have the standard representation (Itzykson and 

Usually t~(x) ~ C 4 is a column spinor, but in Section 5.2 we shall regard it 
as a 2 • 2 complex matrix. This will appear clear once we achieve a one- 
dimensional (complexified) quaternionic formulation of the Dirac equation. 
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5.1. Real Quaternionic Representation 

Noting that the imaginary unit which characterizes the momentum opera- 
tor must appear on the right-hand of the wave function (p ~ ----- O~li), we write 
down the following real quaternionic Dirac equation: 

~l~O~.~(x)i = mrS(x) (23) 

Now, ~(x) ~ ~2 is a quaternionic column spinor. The two-dimensional 
quaternionic version of the standard 4 • 4 complex ~/~-matrices is given by 

~/o = 1 and ~/ = q - 1 

with 

q - -  ( k , j ,  - i ) l i  

Obviously, the standard results are soon obtained by translating the complex 
formulation. At first sight this is not the same as the quaternionic ~t ~ set 
given in Rotelli (1989a) (except for ~/0); however, there exists a similarity 
transformation which transforms the above set into 

'~0ef = (~ O1) and '~ref = h( 0 l )  

with h -- (i, j, k). Explicitly, 

with 

50,ylx50-1 = ,~f 

0) 
5 ~  0 (1 + j ) l i  

5.2. Complexified Quaternionic Representation 

In virtue of our translation rules, we can obtain a one-dimensional 
complexified quaternionic Dirac equation. Due to its commutation properties, 
the imaginary unit t, which characterizes the momentum operator, can now 
appear on the left-hand. So the one-dimensional Dirac equation reads 

t~/~0~(x) = m~(x)  (25) 

where ~(x) E ~c is a (complexified) quaternionic spinor. The quaternionic 
representation for the standard ~/~-matrices is soon obtained by translation 
(Appendix B2), 
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~l ~ = - i l i  and ~1 = - ( k ,  tilj ,  j )  (26) 

Obviously, we can directly obtain a more elegant quaternionic representation 
for the ~/~-matrices; for example, 

.yo = ili and ~/= thlj 

satisfy the Dirac algebra 

and 

{~f, ~f} = 2g~" 

~0, = ~0, V* = - V  

The possibility to write down a one-component quaternionic version of the 
Dirac equation gives an interesting "bonus." In fact, t-complex linear barred 
operators can be reinterpreted by the left and right action of s imp le  complexi- 
fied quaternions, and s imp le  complexified quatemions can be represented by 
2 • 2 complex matrices 

z o  + Lz,  - 

Zo + jzo + t(zl + Jz l )~  Zo + tZl Z~ + tZ ~ ]' Z0,1, Z0,1" i ---> t 

(27) 

where we use the identification (18) for the imaginary units L j , / .  The result 
is a two-dimensional complex representation of the Dirac equation. The 
explanation is simple once seen. In the standard theory the 4-dimensional 
complex freedom degrees of the spinor are represented by a four-dimensional 
vector column. Nevertheless, we have another possibility, namely to represent 
such 4 complex freedom degrees by a 2 • 2 complex matrix 

02 ,_, Oo % 
~3 q'c q'a 

In both the cases the most general transformation which can be performed 
on our spinors will be characterized by 16 complex parameters. For a 4- 
dimensional vector column spinor, we obviously have the standard left  ac t ion  
of 4 • 4 complex matrices, whereas for 2 • 2 complex matrix spinors, we 
find the possibility of left~right ac t ion  of 2 • 2 complex matrices. The most 
general transformation on 2 • 2 complex matrix spinors will be 

d[/[ 0 + dl/tlIO" I + d~2lO" 2 + ./~t3lo" 3 

with At0,1.2,3 2 • 2 complex matrices. Such transformation is again character- 
ized by 16 complex parameters. 
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5.3. A "Surprising" Possibility 

Working within complexified QQM with/-complex geometry, we also 
find a quadrupling of solutions and this suggests a correspondence between 
the standard column spinor t~ ~ C a 

(~ 
I~l : ~.13 , 1~1,2,3,4 E ('~(1, 1,) 

\1~/4/ 

and (complexified) quatemionic spinor �9 E ~c 

at/ = ~1 "~ jl]/2 "{- 1'(1113 "l-j~/4), ~1,2,3,4 ~ C ( 1 ,  i) C 

Nevertheless, because of/-complex geometry, the most general transformation 
on the (complexified) quaternionic spinor ~ will be characterized by 8 i- 
complex parameters 

(~  =-- q~ + p~li (qo P~ e ~ )  

Due to missing complex parameters, we should have to meet difficulties in 
the formulation of the Dirac equation 

�9 y ~ O ~ ( x ) i  = m ~ ( x )  (28) 

where the complex imaginary units have to appear on the fight-hand side 
due to the momentum operator definition (p -- -oli). 

We now show that an interesting possibility surprisingly exists. Let us 
observe as follows. In finding the ~/~-matfices satisfying the Dirac algebra, 
we have no problems with the ~-matrices, in fact we immediately find as 
suitable choice 

~1 = h - ( i , j ,  k), {h", h n} = 2g "~ (m, n = 1, 2, 3), h t = - h  

Nevertheless, we cannot find a quaternionic numbers which anticommutes 
with b, and consequently we cannot give a (complexified) quaternionic repre- 
sentation for the ~~ Working in complexified QQM with t-complex 
geometry, the problem is overcome by using two "different" barred quaterni- 
onic imaginary units in representing ~/0 and "y. Explicitly, 

.yo = ili and ~/ = dalj 

Now we have only the barred imaginary unit 11i, and so this possibility 
is avoided. 
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However, we can have recourse to a "trick." The action of the standard 
~/~ on the complex spinor 0 E C 4 is 

(i ~176 
1 0 

~/~ = 0 - 1 
0 0 

0 / / 0 q  05 
o 1|o  I = - 0 3  

-- 1 / \ 0 4 /  --04 

In terms of complexified quaternions we have to find an operation which 
performs the following transformation: 

01 + j02 + t(03 + J04) ~ 01 "~- J02 -- 1'(0113 "~ J04) 

The solution is now obvious. The required operation is the .-involution, 
---> W'. Finally the Dirac equation 

(0, + ~1~ �9 8)W(x) i  = m~oW(X) 

reads 

(Or + th �9 O)W(x)i = mW'(x)  (29) 

Since this equation is not obtained by simple translation, it requires particular 
study which will be developed in a forthcoming paper (De Leo and 
Rodrigues, n.d.). 

6. ODD-DIMENSIONAL TRANSLATION 

Up to now we have performed only even-dimensional translation. Odd 
complex representations of complex groups are excluded. Nonreducibility 
gives the existence of "anomalous" solutions. This simply followed from the 
complex geometry, which imposes the orthogonality of 0, J0  within real 
QQM and of 0, i0, J0, k~ within complexified QQM. This appears to exclude 
a complete translation between standard (complex) QM and QQM, which is 
good or bad news, according to one's point of view. 

There exists a trivial way of bypassing this problem by eliminating the 
anomalous solutions, assuming that they are "nonphysical" solutions (Rotelli, 
1989b). This is not the correct interpretation (De Leo and Rotelli, 1992). 

Odd-dimensional complex representations will be reducible with barred 
quaternions thanks to the overlapping feature described below. Hence, the 
problem of having a reducible vector space for a nonreducible matrix represen- 
tation will be partially eliminated. 
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6.1. "Overlapping" Translation 

In this subsection we shall describe the "overlapping" technique by 
illustrating the situation for spin 1. The general rules for any odd-dimensional 
matrix can be then extracted by a simple "trick". 

The three "complex" anti-hermitian generators of spin 1, A m ( m  = 1, 

z) 0 , 

I 

2, 3), are, in standard form, 

= ---~ 0 1 , 
1 

A! 

A2 

(i 0o) A 3 = - i  0 
0 1 

(3O) 

These have normal/anomalous solutions 

(i) (Z)(!)(!)(Z)(i) 
Thus, each eigenvalue is degenerate and the vector space represented by 
the column matrices is reducible to two three-dimensional subspaces. The 
conventional form of reductions of the 3 X 3 generators is not possible 
because it would require the division of the 3 X 3 matrices Am into two 
distinct blocks, one of 2 X 2 (quaternionic in general, and this is possible) 
and one of  1 X 1, and this can be explicitly excluded. Hermitian generators 
of SU(2) exist, they are ili, j l i ,  and kli .  However, these correspond to spin- 
1/2 eigenvalues and not spin 1. It is easy to convince oneself that no one- 
dimensional spin-1 representations exist. 

This is an example of the reduction problem mentioned previously. Now 
we shall show explicitly that there exists a generalized quaternionic similarity 
matrix S (S t = S - l )  such that the Am are reduced to two overlapping 2 X 
2 block forms so that one element, the (2,2)-element, is common to both 
blocks. However, if this element if not identically zero, it is always a composite 
of two terms, one of which annihilates one of the corresponding eigenvectors. 
Thus the two blocks may be unlocked and studied separately. 
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Explicitly an S matrix such as that described above is given by 

2 ( 1 -  ili j ( 1 - i l i ) ! )  
S =  0 0 

(1 + ili) - j ( 1  + ili) 

The transformed generators Am = SA,,S * are then given by 

= 0 
7t i --~ - kd 

,a o) 
A2 = --~ - "d 0 

jd 

0 i) �9 43 = - i  
0 

(31) 

with 2a = 1 - i l i  and 2d = 1 + ill In/~3 the (2,2)-element can be written 
conveniently as i(a + d), i.e., containing a sum of projection operators. 
The corresponding transformed state vectors with eigenvalues + 1, 0, - 1  
are, respectively, 

and (i), (!t, (i/ 
We observe that the first triplet consists of vectors of the form 

while the second triplet consists of vectors of the form 

Naturally the two triplets remain orthogonal with a complex geometry and 
furthermore the separate sets of reduced 2 • 2 quaternionic blocks do not 
perform any rotation upon one or other set of triplets. Actually the two sets 
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of reduced 2 X 2 generators are connected by a similarity transformation and 
thus are in turn equivalent. Explicitly the sets of 2 • 2 reduced quateruionic 
representations are 

,(, :) ,(j a) (, o) 
BI=---~ kd ' - ~  ' /~3 = - i a  0 

- 1 ( 0  kay, 1 (jD Lj )  C3=-id(o  I 7) 
kd kj C2=  d ' 

The corresponding state vectors with eigenvalues + 1, 0, - 1, respectively, are 

(0) '  (~)'  (0) and (~), (0), (~) 

It is of course natural to ask what the translation of these reduced 2 • 
2 generators to complex form yields. The answer, which seems obvious a 
posteriori, is the 4 • 4 complex generators of SU(2) reducible to spin-1 ~) 
spin-0. Not, of course, the irreducible 4 • 4 representations, which would 
correspond to spin 3/2. Because of our derivation we would be tempted to 
identify the spin-0 element as a member of an independent triplet, but this 
has no physical foundation. What is significant is that the reduction is not 
perfect in the sense that it brings along a scalar partner. 

These results lead to the following consequences: One is a mechanical 
(automatic) way of reducing any odd-dimensional (otherwise irreducible) 
complex matrix with quatemions into overlapping block structure. The second 
is the physical significance of this procedure. For the first, we propose to 
add an extra row and column of zeros to our matrix, thus making it become 
an even matrix and then applying the translation of this complex matrix to 
quaternions. This is a formal trick since we began with a complex odd- 
dimensional matrix operating upon a quaternionic space, i.e., considered as 
a quaternionic matrix without need of translation and with only a question 
about its reducibility. Nevertheless, this trick always yields one or other of 
the overlapping block forms. 

We wish to emphasize that the previous odd translation is possible, but 
it is not obligatory. In fact, "complex" groups or dynamical equations can 
be allowed within quaternionic physical theory. In such a case we must find 
a physical interpretation for our "anomalous" solutions. 

6.2. "Anomalous" Solutions and Their Physical Interpretation 

In this subsection we give some possible interpretations of "anoma- 
lous" solutions. 
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6.2.1. Real QQM 

We shall treat the color group SU(3) and the standard Klein-Gordon 
equation. In discussing the color group we find three possibilities (De Leo, 
1996c). 

1. The "complex" group SU(3 Cright). In this case, we can interpret the 
complex solutions as u-states and the anomalous solutions as jd-states. It is 
straightforward to verify that the quatemionic electroweak group U(1,q) does 
not mix the quark freedom degrees red, green, blue (De Leo, 1997). 

2. The "complex" group SU(3,CI~It). We also have a doubling of states, 
but in this case the complex solutions transform like 3, whereas the j-complex 
solutions like 3* (ij = ji*). So we have additional multiplets. The minimal 
grand unification group SU(5) (Georgi and Glashow, 1974) will have (in its 
quaternionic version) the following additional multiplets j5* and j l0*.  We 
know that a single unification point cannot be obtained within minimal 
(nonsupersymmetric) SU(5). In the "quaternionic" version of SU(5) additional 
multiplets of quarks and leptons naturally appear and allow the right unifica- 
tion properties (Amaldi et al., 1992). 

3. The "quaternionic" group SU(2, q + pli). In this case we start with 
the quaternionic counterpart of SU(4) and break down a two-dimensional 
quaternionic color group, which represents the odd-dimensional quaternionic 
translation of the group SU(3). In this case we must obviously admit a fourth 
color. Following the idea of Pati and Salam (1973), we can put the fermions 
of the first generation in the multiplets 

ub + jVw]' db + jew] 

Let us direct our attention to the "anomalous" scalars of the Klein-Gordon 
equation (De Leon and Rotelli, 1992). 

The "Quaternionic" KG equation. Since the only fundamental scalar 
could be the Higgs boson, in order to interpret the anomalous scalars we 
believe it to be natural to concentrate our attention on the Higgs sector (De 
Leo and Rotelli, 1995) of the electroweak theory. In the quaternionic version 
of the Salam-Weinberg model (Weinberg, 1967; Salam, 1968), the anomalous 
scalars of the Klein-Gordon equation are fundamental to obtain the necessary 
"four-complex" freedom degrees of Higgs scalars before symmetry breaking, 

= q~ + jt~, q~, ~ complex scalar field 

It is also immediate to observe that the minimal four Higgs of the unbroken 
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electroweak theory naturally determine the quatemionic invariance group 
which corresponds to the Glashow group (Glashow, 1961) 

U(I,  h)lU(1, i) (32) 

6.2.2. Complexified QQM 

In this subsection we direct our attention to the quadrupling of solutions 
of the "complexified quaternionic" Klein-Gordon equation. 

The "quaternionic" DKP equation. The (complex) Kemmer equation 
(Klemmer, 1938)is 

13~0~q~ = mq~ (33) 

(where the i-factor of the momentum operator has been absorbed into [3 ~) 
with the 13~-matrices satisfying the Duffin-Kemmer-Petiau (DKP) condition 
(Petiau, 1936; Grhrniau, 1938; Duffin, 1938) 

13~13~[3 x + 13~[3~13~ = - g  r'~13~ - g x~13~ (34) 

The DKP equation has spin content 0 and 1. Equation (34) implies that 13r 
are not invertible, so that this equation cannot be written in the Dirac form 

ON~i = Hq~ 

It requires a 16-dimensional representation for the [3~-matrices. Thus, by 
translating the "complex" 13~-matrices, we can immediately write down a 4- 
dimensional "quaternionic" DKP equation. In such a case we have no anoma- 
lous solution, because of the reduced matrix dimensions of the quatemionic 
DKP equation (the same situation appeared in the Dirac equation). 

Historically, the loss of the interest in the DKP equation stems from the 
equivalence of the DKP equation to the KG and Proca equations (Fischbach 
et al., 1972; Krajcik and Nieto, 1974), in addition to the great algebraic 
complexity of the DKP formulation. In the quaternionic world the KG equa- 
tion is equivalent to four  DKP equations (16 complex matrices split into four 
4-dimensional quaternionic blocks). It is straightforward to show that these 
four DKP equations can be taken back to four new KG equations (without 
anomalous solutions), namely 

[1 - ili - j l j  - klk](O~O~ + m2)dP = 0 

[1 - ili + j l j  + klk](O~O~ + m2)dP = 0 

[1 + iti - - j l j  + klkl(O~O~ + m2)dP = 0 

[1 + ill + j l j  - klk](O~O~ + m2)~ = 0 
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Table I. 

CQM Real QQM 
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Complexified QQM 

U(l) 
Electromagnetic group 

U(I, i) | U(I, h) 
"Standard" electroweak group 

U(l, 0 | u (1, h) | U (l, h) 
"Left right" electroweak group 

Note that we are not  obliged to kill the anomalous solutions. The correct 
equations and the corresponding Lagrangians are in practice determined only 
when the number of particles in the theory is fixed. 

6.2.3. Qua tern ion ic  P h a s e s  

We conclude this section with some considerations on the symmetry 
operations. A symmetry operation 9 ~ of a system described by I~ is a mapping 
of I~) into ITS') which preserves all transition probabilities 

i (q~' l~ ' ) i2  = I(q~tq,)l 2 

In QQM with complex geometry quaternionic/complex phases 

e "'hle i'~ (real quaternions) 
e ~'veWhlel~'h (complexified quatemions) 

appear. We can immediately prove that the previous transformations represent 
an invariance of (~lq~)i and (xI-rlt~)i, 

(l[flq~)i = e- i ' (~ lq~) i  e i~ = (~kp)i  

(att l~)t  = e-P'h(xI)'ltI~)t e l3"h = (XItl~I~)t 

Thus, we could propose the identification given in Table I for the "minimal" 
invariance groups which appear in CQM and real/complexified QQM 

7. CONCLUSIONS 

In this paper we showed a set of rules for passing back and forth between 
standard QM and real/complexified QQM. It is important to recall that the 
possibility of rewriting particle physics theories in quaternionic form is a 
nontrivial objective; in fact the noncommutative nature of quaternions alters 
the conventional approach. A fundamental ingredient in performing quaterni- 
onic versions of standard theories is surely represented by the choice of a 
"complex geometry". It allows the definition of an appropriate momentum 
operator by the introduction of the so-called barred operators. 
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As example of quatemionic translation of standard theories, we examined 
the Dirac equation. In a pure translation nothing can be predicted which is 
not already in the original theory, nevertheless some assumptions may become 
more "natural," some calculations may be more rapid, and some "new" 
(hidden) results may appear in the translated version for the first time. Let 
us briefly explain this last consideration. The Dirac equation in the complex 
world is expressed by 4 X 4 complex matrices and the spinor 0 is represented 
by a 4-dimensional (noninvertible) vector column. If we use real quaternions, 
we halve the dimensions of our ~/~-matrices and the spinor t~. Nevertheless, 
nothing new appears. Going to complexified quaternions, we were able to 
write a one-component Dirac equation and as consequence of this, we reinter- 
preted the Dirac spinor ~ by a complexified quatemion xIt. In this formalism 
we find two "bonuses": 

1. Complexified quatemions can be represented by 2 • 2 complex 
matrices and this suggests the possibility to write down a 2 • 2 complex 
Dirac equation, showing that the Pauli algebra is sufficient to reproduce the 
standard Dirac results. 

2. Complexified quatemionic spinors W are now invertible 

xF -1 - WW* e ~(1, t) WW,, 

We recall that the representation of a Dirac spinor by a generic (invertible) 
element of the Pauli algebra has given new insights in Dirac's theory of the 
electron (Hestenes, 1966, 1967, 1975, 1991; Rodrigues and Capelas de 
Oliveira, 1990; Zeni and Rodrigues, 1992). 

In the quatemionic world we also find embarrassment with purely com- 
plex odd-dimensional matrix representations of a group acting upon a quater- 
nionic space. The space representation is reducible, but the generator 
representation is not. We showed that odd-dimensional complex matrices are 
reducible if we allow for overlapping block structures. This will be possible 
in all situations, so these "translations" are only partial. We wish to emphasizes 
that we are not obliged to kill the anomalous solutions. They can be reinter- 
preted within unification theories. Besides, the presence of such anomalous 
solutions in the (standard) KG equation suggests new invariance groups. We 
propose the following analogy: 

Complex ---> Real quatemions 
Electroagnetism ---> Standard electroweak 

--~ Complexified quaternions 
--~ Left/right electroweak symmetry 

However, one cannot elude the impression that quatemions invite an even 
number o f  particle states. 
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Before concluding this paper, let us address some considerations on the 
complexified quatemionic version of the Dirac equation given in Section 
5.3. If right, it could represent the "natural" representation for the Dirac 
equation. Why? 

1. It is immediately translated into a two-dimensional complex Dirac 
equation, where we immediately recognize the element of the Pauli algebra. 

2. Its solutions, obviously of the form W = U e -ipx (remember that the 
momentum operator is defined by the right action of the quaternionic imagi- 
nary unit i), in the case of rest frame, are 

aIr+ ~ ( 1 , j ) e  -imt and q~_ ~ t , (1 , j )e  +imt 

Thus, we can give an interesting geometric interpretation of the Dirac solutions 
(at least for particle with p = 0). Solutions of negative energy are obtained 
by these of positive energy with rotations of xr/2 in the complex plane (1, 0. 

3. The �9 involution can be immediately related to space inversion, 

�9 (x, t) ---> q~~ t) leaves invariant the Dirac equation 

and this suggests a possible connection between the *It conjugations (which 
represent antiautomorphisms) and TIC operations. The CPT theorem should 
be a natural consequence of the three conjugations which appear in the 
complexified quaternionic field. 

4. The nonrelativistic limit, obtained by killing the the negative-energy 
solutions, should be characterized by pure quaternionic solutions. In this case, 
the nonrelativistic limit should represent an intrinsic property of (complexi- 
fled) quaternionic solutions, in contrast to the complex and real quaternionic 
cases, where the nonrelativistic limit gives a dimensionally reduced ScrOd- 
inger-Pauli equation. 

5. We find the interesting situation given in Table II in discussing the 
"complex" SchrSdinger equation. 

These last considerations obviously represent speculations which need 
to be deeply investigated. We shall develop a complete and clear study of 
the complexified quatemionic Dirac equation (within QQM with/-complex 
geometry) in a forthcoming paper (De Leo and Rodrigues, n.d.) For the 
moment, we hope to have simplified and clarified the mathematical language 
used in the quaternionic world. The use of quaternions in physical theories 

Table II. 
i i i  ii 

Complex Real quatemions Complexified quaternions 

One solution Two solutions Four solutions 
Spin~ 4, E > 0  Spin 1" J,,E>0, E < 0  

i 
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is surely possible, and in some cases it can provide additional predictions 
and new geometric interpretations. 

APPENDIX A. HISTORICAL REVIEW 

In this appendix we give a little of the history of quaternions. The history 
of this subject is dominated by the extraordinary contrast of two personalities 
(Altmann, 1986): Sir William Rovan Hamilton and Olinde Rodrigues. 

AI. Hamilton's Discovery 

On 16 October 1843 Hamilton was walking along the Royal Canal with 
his wife to preside at a council meeting of the Royal Irish Academy. Although 
his wife talked to him now and again, Hamilton hardly listened, for the 
discovery of the quaternions, the first noncommutative algebra to be studied, 
was taking shape in his mind. 

Hamilton knew the geometrical Argand diagram definition of the com- 
plex numbers, but preferred to define complex numbers as pairs (a,b) of real 
numbers. He had set himself the task of finding how triplets (a,b,c) of real 
numbers would multiply to give a 3-dimensional analogue. After a number 
of failed attempts, inspiration struck that day as he walked by the Royal Canal. 

And here there dawned on me the notion that we must admit, in 
some sense, a fourth dimension of space for the purpose of calcu- 
lating with tr iples . . .  An electric circuit seemed to close, and a 
spark flashed forth. 

He could not resist the impulse to carve the formulas for quaternions in the 
stone of Brougham Bridge as he and his wife passed it. Hamilton felt this 
discovery would revolutionize mathematical physics and he spent the rest of 
his life working on quaternions. 

Letter Describing the Discovery of Quaternions 

From Sir W. R. Hamilton to Rev. Archibald H. Hamilton 
Letter dated August 5, 1865 

My dear Archibald, 
(1) I had been wishing for an occasion of corresponding a little with 

you on quaternions and your note of yesterday, received this morning, that you 
"have been reflecting on several points connected with them" (quaternions), 
"particularly on the Multiplication of vectors". 

(2) No more important, or indeed fundamental question, in the whole 
Theory of Quaternions; can be proposed than that which thus inquires What 
is such Multiplication? What are its Rules, its Objects, its Results? What 
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Analogies exist between it and other Operations which have received the 
same general Name? And finally, what is (if any) its Utility? 

(3) If I may be allowed to speak of myself in connexion with the subject, 
I might do so in a way which would bring you in, by referring to an ante- 
quaternionic, time, when you were a mere child, but had caught from me 
the conception of a Vector, as represented by a Triplet: and indeed I happen 
to be able to put the finger of memory upon the year and month--October,  
1843--when having recently returned from visits to Cork and Parsonstown, 
connected with a meeting of the British Association the desire to discover 
the laws of the multiplication referred to regained with me a certain strength 
and earnestness which had for years been dormant, but was then on the point 
of being gratified, and was occasionally talked of with you. Every morning 
in the early part of the above-cited month, on my coming down to breakfast, 
your (then) little brother William Edwin, and yourself, used to ask me, "Well, 
Papa, can you multiply triplets"? Whereto I was always obliged to reply, 
with a sad shake of the head: "No, I can only add and subtract them". 

(4) But on the 16th day of the same month--which happened to be a 
Monday, and a Council day of the Royal Irish Academy-- I  was walking in 
to attend and preside, and your mother was walking with me, along the Royal 
Canal, to which she had perhaps driven, and although she talked with me 
now and then, yet an under-current of thought was going on in my mind, 
which gave at last a result, whereof it is not too much to say that I felt at 
once the importance. An electric circuit seemed to close, and a spark flashed 
forth, the herald (as I foresaw, immediately) of many long years to come of  
definitely directed thought and work, by myself if spared, and at all events 
on the part of others, if I should even be allowed to live long enough distinctly 
to communicate the discovery. Nor could I resist the impulse--  
unphilosophical as it may have been-- to  cut with a knife on a stone of 
Brougham Bridge, as we passed it, the fundamental formula with the symbols, 
i, j, k, namely 

i 2= j2  = k  2 = ijk = - 1  

which contains the Solution of the Problem, but of course, as an inscription, 
has long since mouldered away. A more durable notice remains, however, 
on the Council Books of the Academy for that day (October 16th, 1843), 
which records the fact, that I then asked for and obtained leave to read a 
Paper on Quaternions, at the First General Meeting of the session: which 
reading took place accordingly, on Monday the 13th of the November follow- 
ing. With this quaternion of paragraphs I close this letter, but I hope to 
follow it up very shortly with another. 

Your affectionate father, 
William Rowan Hamilton 
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A2. Rodrigues' Discovery 

Rotations are parametrized by means of the well-known Euler angles. 
A different approach is possible, and was introduced by Olinde Rodrigues 
in 1840. The rotation operators are obtained in this approach by an entirely 
geometric method, which not only provides a much better insight into their 
nature, but also leads most naturally to the parametrization of rotations by 
parameters that coincide with quaternions. These parameters provide an alge- 
bra that permits the multiplication of rotations in a very simple way. 

Having solved the geometric problem as regards the product of two 
rotations, Rodrigues (1840) gives closed formulas for determining the resul- 
tant angle and axis of rotation. In order to do this, he parametrizes a rotation 
with four parameters. If ct is the angle of rotation and/~ -- (Ux, uy, Uz) the 
unitary vector denoting the axis of rotation, his parameters are 

cos(2 ), ux sin(2 ), Uy sin(2 ), Uz sin(2 ) 

If they are used into a quateruion, taking the place of its real component, 
then the formula for the multiplication of rotations that Rodrigues provides 
is precisely Hamilton's multiplication rule for quaternions. 

An elegant and clear discussion of quaternionic treatment of rotations 
is given in Altmann (1986). 

APPENDIX B. EVEN-DIMENSIONAL TRANSLATION RULES 

With the rules given in Section 4 we can translate any quaternionic 
operator into an equivalent even-dimensional complex matrix and vice versa. 

B1. Real Quaternions 

For the lowest order operator we have 

( Zo+tZ, -z~ - t z ~  
zo W jZo + (Zl + Jzl)li "~ ~O + t~l Z~ + tZ~ J" Zo,1, ~0,1: 

Equivalently a generic 2 • 2 complex matrix is given by 

2( a b ) - - ~ a + d * + j ( c - b * ) + ( a - d + j c + b * )  i 

a, b, c, d: 

i ----) t 

(35) 

i---> t (36) 
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B2. Complexified Quaternions 

For the lowest order operator 

q c + p c l i  + rr  s c l k - - - ~ +  h . c  q +  ( c ~ +  h ' c P ) l i  + ( c ~ + h . c r ) l j  

+ (c~ + h -  eS)lk 

where c~ 'p'r's, e q'p'r's ~ ~(1, Q, we find the following 4 • 4 complex 
matrix representation: 

0 1 -2 -3 -  1-0-3-2  + 2-3+0 - 1- 
1+0+3-2 + 0+1-2+3 + 3 - 2 - 1 - 0  + 
2+3+0+1 - 3+2-1-0 - 0+1+2-3 + 
3+2-1+0 + 2-3+0+1 - 1+0+3- 2 - 

where we use the compact notation 

0+1-2-3 - -  + c g - ~ - c ~ - c ~  

2+3+0+1 - - +c  q + ~ + c~ - c~ 

Equivalently a generic 4 • 4 complex matrix 

al bl Cl d l )  

4 a2 b2 C2 d2 
a3 b3 c3 d3 
a4 b4 c4 d4 

is translated into 

a 

with 

3 - 2 - 1 + 0 - \  
2+3-0 - 1 - |  
1-0+3-2-~ 
0 + 1-2+3 - ]  

+b+c+d + + ib -a+d-c  + + jc-d+a+b - + k d - c - b + a  + 

+ (b -a+d+c  - + i a - b - c + d  + + j d - c - b - a -  + kc+d-a+b-) l i  

+ ( c - d - a + b  + + id+c-b -a  + + j a - b + c - d  + + k b - a - d - c - ) l j  

+ ( d - c + b - a  + + i c - d - a - b -  + jb+a+d-c  - + ka-b+c+d-) lk  

a +b+c+d + -- +al + b2 -t- c 3 q- d4 

c - d - a + b  + - - c l  - d2 + a3 + b4 

We now give sample examples. In the matrix 

(37) 

(38) 
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t h e  o n l y  n o n z e r o  c o e f f i c i e n t s  are  a~ = b2 = - c 3  = - d 4  = �88 a n d  s o  the  

complexified quaternionic version is characterized by a § b § c -  d - = 1, namely 

~1 ~ = i a - b - c + d + l i  = - i a + b +  c - d - l i  = - i l i  (39) 

In the same way we can obtain the translation for the complex matrices 

, (o  o/ 
In  this case we have 

d + c + b - a  - = 1, d - c + b + a  - = i, c + d - a - b  + = 1 

and so the complexified quaternionic version of the ~/matrices is given by 

~1 = ( k d - c - b + a + ,  i d + c - b - a + l j ,  j c - d + a + b - )  - -  - ( k ,  t i l j ,  j )  (40) 
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